При описании группового поведения высокочастотных трейдеров возникает краевая задача на основе концепции игр среднего поля. Система состоит из двух связных уравнений в частных производных: Гамильтона–Якоби–Беллмана, описывающего эволюцию функции среднего выигрыша в обратном времени, и Колмогорова–Фоккера–Планка, описывающего эволюцию плотности распределения трейдеров в прямом времени. Системе свойственна плохая обусловленность из-за магистрального эффекта. При некоторых предположениях удается произвести редукцию к системе уравнений Риккати, однако остается открытым вопрос корректности редуцированной задачи. В данной работе этот вопрос исследуется, а именно, условия существования и единственности решения краевой задачи в зависимости от параметров модели.